PHYSICAL REVIEW E

VOLUME 48, NUMBER 5

NOVEMBER 1993

ARTICLES

Spatiotemporal correlation of colored noise
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We calculated the noise correlation in a Gaussian stochastic process that is non-8-function-correlated
in both space and time. The colored noise obeys a linear reaction-diffusion Langevin equation with
Gaussian white noise. Our result is a generalization of the Ornstein-Uhlenbeck process to take into ac-
count finite correlation in space as well as in time for colored noise.
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I. INTRODUCTION

Many problems in nonequilibrium statistical mechan-
ics are modeled by Langevin equations [1-6]. For in-
stance, the application of Langevin equations to describe
a nonequilibrium surface [7-13] and self-organized criti-
cality [14,15] are recent active areas of research. In these
equations, a stochastic term 7(r,¢) is added to the macro-
scopic and deterministic equation, of the form

%Sf'=f([lll(r,t)],V¢,V2¢)+17(r,t) . (1)

Here y(r,t) is the relevant variable of the system, and the
first term on the right-hand side is a deterministic force.
7(r,t) is a random term called noise, which is usually as-
sumed to be Gaussian and accounts for either internal de-
grees of freedom or fluctuations in the constraints im-
posed externally on the system. In the first case, the
noise is called internal noise and is assumed to be white
noise. That means the values of the random field in a
given point and at a given time does not depend on its
value in other points or at other times,

(n(r,t)n(r,t')) =2ed(r—1')8(t —1') , (2)

where € is the intensity of the noise and { ) denotes an
average over the probability distribution of the random
field. In the case of external noise, or noise coming from
fluctuations in the constraints imposed externally on the
system, the correlations of the random field between
different points and times could be nonzero. In this case,
the spectrum of the noise in both momentum k and fre-
quency o is no longer constant, so one speaks of colored
noise.

Colored noise has been studied extensively in first- and
second-order processes. In first-order processes, it is
known that colored noise is non-Markovian when the dis-
tribution between switches is not exponential. When the
distribution between switches is exponential (in which
case the colored noise is Markovian and is sometimes re-
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ferred to as the random telegraph signal), the probability
density function obeys an integro-differential equation
that reduces to the telegrapher’s equation in the driftless
case [1,6,16,17]. Second-order processes driven by
colored noise are of practical interest in many branches
of physics and in engineering [18-22]. Recently, colored
noise has also been used in nonequilibrium surface-
growth models [9,13].

The most famous example of colored noise is the
Ornstein-Uhlenbeck process, which is Gaussian and has
zero mean and a correlation given by [6,23]

<§(r,t)§(r',t'>>=§e“"‘f"/fa(r—r') . 3

Here 7 is the correlation time of the noise, i.e., a measure
of its memory in time. The stochastic differential equa-
tion that governs its evolution is

= — L 1
&)= T§(t)+T17(t), 4)

where 7)(?) is a white noise following Eq. (2) without spa-
tial dependence.

Recently, Garcia-Ojalvo, Sancho, and Ramirez-Piscina
[24] proposed a generalization of this very simple idea to
take into account finite correlation in space as well. The
simplest stochastic differential equation modeling such a
noise is the following reaction-diffusion equation:

é‘(r,t):—%(I—AZV2)§+%n(r,t), (5)

where 7(r,t) is again a white noise following (2), and A is
the correlation length of &(r,z). They had also proposed
[24] a method of numerically generating colored noise ac-
cording to (5).

The purpose of this paper is to calculate the correlation
of the colored noise obeying (5) so as to obtain a generali-
zation of the Ornstein-Uhlenbeck process (3) to the case
with spatial correlations. In Sec. II we will derive expres-
sions for these correlations for spatial dimensions d =2
and 3. Section III is a summary and conclusion.
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II. SPATIALLY DEPENDENT COLORED NOISE E(k )= f E(r,t) elkrgd,
’ b b

The spatial Fourier transform of (5) has the form 7k, )= f e, elkigdy |

idg =_ l( 1+ A%)E+ i?j(k, t), (6)  Equation (6) has the solution
t T T

where the quantities with tildes denotes their spatial e
Fourier transforms, Using (9), we can calculate the correlation
J

<§(k’t)§(k,,t:)>=;12_e—(1+A2k2)t/re—(1+A2k2)t‘/ff_' du j‘—' dv e(l+)»2k2)u/‘re(1+A2k'2)u/‘r(ﬁ(k,u),ﬁ(k:,v)) )

From (2), the correlation for the white noise 7} has the form
(7(k, )7k, ")) =2€(2m)?8(k—Kk')8(t —1') .

Using (11) in (10) we have

(E(k’t)g(k’,t'))=%(zﬂ)ds(k_kl)e—(1+)»2k2)(t+t’)/ff_' duft’ dve(1+A2k2)(u+v)/rs(u_v)
=%(217')“’4‘5(k~k’)e““H”zkz)““L")/Tfm7 G(t-—u)dufw dv 6(t’—v)e““‘zkz)(“”)/’ﬁ(u-—v)
=%(zﬂ)da(k_kt)e—(1+7»2k2)(t+t’)/rf°° e(t_u)e(tr_u)62(1+12k2)u/‘rdu

—A2k2|t—¢'| /7
—€ d Ly, —lt—=rl/r e
=—=(27)%6(k—k’)
a ¢ 1422

The correlation ¢ £(r,t)E(r’,¢')) is given by the inverse Fourier transform of (12),

1 € _j_. e ~MKH=l/r
S DE(T, )= Eo—li—tl/rfgdpe ——  ° —ik(r—r)
(&(r,)é(r pasra i T

We will calculate the integral in (13) for spatial dimensions d =2 and 3 separately. For d =2, we have

220 22221, g
fdzke Ak tl/Te—ik-(r—r’)=f2”d6f°° e Mk le—s l/fe—iklr——r’lcosek dk
1+A%k? 0 o 1+A%k,
=242t —1'| /7

© e ,

fo ——TW‘-—JO(klr—r Nk dk

— 2 fow(kZ)n(_1)ne—A2k7-|t—t’]/‘rJ0(k|r_rf|)k2n+ldk .
n=0

Using Eq. (6.631.4) of Gradshteyn and Ryzhik [25], the integral in (14) can be calculated,

—)\,zkzlt—t'l/'r © ( I . l’)Zn Ir___rllz
dee e —ikr—r) = }\'Zn(_l)n TIr—r T exp | — T
f 1+A2k2 ,20 2(A2|e—¢'] )2 P 4\ —¢'|
. 27|t —1’'| lr—r'|%r
T2 , 2 %P 2 0ol
4\t —¢t' |+ r—r'| 422t —1¢'|

Therefore for d =2, using (13) and (15), we obtain for the correlation

1 elt—rt'|
272 4Nt —¢' |2+ —r'|?

ANt =t P+ 12
4\t —t'|r

(&(r,E(r', 1)) =

exp

For spatial dimension d =3, we have, for the integral in Eq. (13), using Eq. (3.954.1) of [25],

~ 1 _ 2,2 t 2,2y,
§(k,t)=-;e (1+2%k )t/'rf e (1+A%k2) /Tﬁ(k,t,)dt, )

9)

(10)

(11)

(12)

(14)

(15)

(16)
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—A2k2|t—t'| /T —A2K2|t—t'| /7

3, € —ik-(r—r') — © e . o
fd k—————1+k2k2 e 41rf0 BEFTTER ksin(k|r—r'|)dk

2
= —%e"—"‘/f l2 sinh(|r—r'| /A)+e T T1Ap

—e |r—l"|/lq>
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At —t'|—7lr—r'|
AV |t —t'|
At —¢t' |+ 7lr—1'| (17)
2Vt —1'] ’

where ®(x)=2/V7 f Oxe =4t is the probability integral. Therefore for d =3, using (13) and (17), the noise correlation

has the form

€
87A2

(E(r,t)E(r,t'))=— 2sinh(|r—1'| /A)+e "I 1Ap

Using the asymptotic expansion of ®(x) for large x,

B(x)=1— L Lo
m X

the noise correlation for d =3 reduces to

(Er, (1)) ~—EYT le—r'|VTi=1'] X[

e
AA? 4Nt —t' |2+ r—1'|? P

for |t —1¢'| >1.

III. SUMMARY AND CONCLUSION

We have calculated the correlations in colored noise
obeying a linear reaction-diffusion Langevin equation
[Eq. (5)]. This is a generalization of the Ornstein-
Uhlenbeck process to take into account finite correlations
in space as well as in time. Our result is given by (16) for
spatial dimension d =2 and by (18) for d =3. For large
values of |t —1t'|, (18) reduces to (20), which is very simi-
lar in form to the two-dimensional case (16). For A—0,
the |r—r’| dependences in (16) and (18) reduce to a &

M|t —t'|—7lr—r'| Tl At —t'|+7lr+ 1|
AV T —1'] 2AV [t —1'] '
(18)
(19)
24 41]2 ]2
472t t2| +|r—r'|27? , 20)
A\ |t —t'|

[

function and we obtain the original Ornstein-Uhlenbeck
correlation (3).
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